

ESTIMATING AND MEASURING APPLICATION LATENCY OF TYPICAL
DISTRIBUTED INTERACTIVE SIMULATION (DIS)-BASED ARCHITECTURE

THESIS

Ryan L. Drinkwater, Captain, USAF

AFIT-ENG-13-M-14

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT-ENG-13-M-14

ESTIMATING AND MEASURING APPLICATION LATENCY OF TYPICAL
DISTRIBUTED INTERACTIVE SIMULATION (DIS) - BASED ARCHITECTURE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Ryan L. Drinkwater, B.S.E.E.

Captain, USAF

March 2013

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT -ENG-13-M-14

ESTIMATING AND MEASURING APPLICATION LATENCY OF TYPICAL
DISTRIBUTED INTERACTIVE SIMULATION (DIS) - BASED ARCHITECTURE

Ryan L. Drinkwater, B.S.E.E.
Captain, USAF

Approved:

Dr. Douglas Hodson (Chairman)

3,/J3/J3
Date

iv

Abstract

One of the challenges in a distributed virtual environment stems from the

requirement to simultaneously execute the simulations in real-time to support human

interaction, in conjunction with maintaining a consistent view of the shared simulated

environment. Maintaining a consistent set of simulation state data in the presence of

network latency is difficult if individual data items are updated frequently. The principle

application of Distributed Interactive Simulation (DIS)-based simulation environments

has been in the domain of training where a consistent view or its correctness is often

judged in subjective terms such as the simulation looking and feeling correct. New

application areas for these systems are emerging in the analysis and test domains. For

these domains, quantifying shared state consistency in terms of overall distributed

application architecture is desirable. This research effort investigates and validates

methods to calculate and measure the latency effects due to the multithreaded architecture

of a real-time distributed simulation. These latencies may significantly affect the

consistency of the simulation. An improved understanding is beneficial to the Air Force

where real-time distributed simulations used for the purpose of analyzing the systems

they simulate and the support of live test events.

v

Table of Contents

Page

Abstract .. iv

Table of Contents ...v

List of Figures ... vii

List of Tables ... ix

List of Equations ..x

I. Introduction ...1

General Issue ...1
Problem Statement ..2
Interactive Simulations..2
Real-Time Distributed Simulation Consistency..4
Research Goals ..6
Assumptions/Limitations ..7
Methodology Preview ...7
Summary ...8

II. Literature Review ...9

Chapter Overview ...9
Terminology ..9
Shared View ..12
Defining Consistency ..13
Tradeoffs for Consistency ...14
Consistency versus Accuracy ..15
Factors of Consistency ..16

Network Latency .. 16
Message Ordering ... 17
Software Architecture .. 19
Relevant Research ... 20
Measuring Consistency ... 22

Conclusion ..23

III. Methodology ...25

Chapter Overview ...25
Problem Statement ..25

vi

Approach ...26
System Boundaries ..28
System Services ..29
Workload ...30
Performance Metrics ...30
Parameters ...33
Factors ...33
Evaluation Technique..36
Experimental Design ...38

Obtaining Measurements of Consistency .. 38
Full Factorial Design .. 41

Analysis ...42
Summary ...43

IV. Analysis and Results ..44

Chapter Overview ...44
Process of Collecting Emulator Results ..44

Overview of Emulator ... 44
Experiment Configurations ... 45
Replications ... 47

Consistency Metric Results ...48
Total Latency ... 48
State Data Age ... 52
Export Time ... 58
Export Error .. 66

Comparison to Related Work ..68
Summary ...69

V. Conclusions and Recommendations ..71

Chapter Overview ...71
Conclusions of Research ...71
Recommendations for Future Research ..73
Summary ...74

Appendix A ..76

Appendix A Overview ...76

Bibliography ..82

vii

List of Figures

 Page

Figure 1: Time Anomaly (Tolk, 2012). ... 18

Figure 2: Temporal Inconsistency (Tolk, 2012). ... 19

Figure 3: Producer, Network, and Consumer Models by Hodson (Hodson, 2009). 21

Figure 4: Multithreaded Architecture. .. 26

Figure 5: Real-Time Distributed Simulation System... 29

Figure 6: Performance Metrics .. 31

Figure 7: Relative Offsets. ... 36

Figure 8: Multithreaded State Space Model Example. .. 39

Figure 9: Run 1 Variability (State Data Age). ... 46

Figure 10: Run 2 Variability (State Data Age). ... 47

Figure 11: Total Latency Given Equal T2 & T3 Rates. ... 49

Figure 12: Total Latency With Faster T2 Rate. ... 51

Figure 13: State Data Age Measurement. .. 55

Figure 14: Model Analysis Plots (State Data Age). ... 58

Figure 15: Model Analysis Plots (Export Time). ... 62

Figure 16: Export Time Measurement: Slower T1 Rate. ... 63

Figure 17: Export Time Measurement: Faster T1 Rate. ... 64

Figure 18: Export Time Measurement: T1 Averaging Effect. ... 64

Figure 19: Export Time: T2 Effects. .. 65

Figure 20: Emulator Inputs and Outputs .. 77

viii

Figure 21: Signals & Slots, Connecting Threads and Processes 80

Figure 22: UML of Thread Manager and Thread Processes .. 81

ix

List of Tables

 Page

Table 1: Factor Levels. .. 41

Table 2: Experiment Responses (Averages of Five Replications). 48

Table 3: State Data Age. .. 55

Table 4: State Data Age ANOVA. ... 56

Table 5: State Data Age, Linear Model (Full). .. 56

Table 6: State Data Age, Linear Model (New). ... 57

Table 7: Export Time Responses. .. 59

Table 8: Export Time, ANOVA... 60

Table 9: Export Time, Linear Model (Full). .. 61

Table 10: Export Error Responses. .. 67

Table 11: Export Error, Linear Model (Full). .. 67

Table 12: Comparison of Hodson's Results (Hodson, 2009). .. 69

x

List of Equations

 Page

Equation 1 (1) ... 51

Equation 2 (2) ... 54

Equation 3 (3) ... 57

Equation 4 (4) ... 59

Equation 5 (5) ... 61

Equation 6 (6) ... 66

1

ESTIMATING AND MEASURING APPLICATION LATENCY OF TYPICAL
DISTRIBUTED INTERACTIVE SIMULATION (DIS) - BASED ARCHITECTURE

 I. Introduction

General Issue

Real-time distributed simulations (RTDS) are used by the Department of Defense

(DoD) to test systems and train personnel. One of the challenges with real-time

distributed simulations is maintaining a tight consistency or small differences among all

simulated views. Consistency is a measure of the difference among all simulated views.

Consistency in a shared environment is affected negatively by numerous factors such as

network latency, computational hardware, message ordering, and software architecture.

A poor consistency in a real-time distributed simulation can lead to inaccuracies and lead

to a poor portrayal of the simulated world. This chapter explores the problems associated

with quantifying the consistency among real-time distributed simulations with a focus on

latency due to software. Characterizing and quantifying simulation state consistency will

lead to a better comprehension and prospective design of real-time distributed

simulations.

 An improved understanding of consistency within a simulation is

beneficial to the Air Force where real-time distributed simulations are used for the

purpose of analyzing the systems they simulate and supporting live test events. The U.S.

DoD has used distributed simulations since the early 1990s as a cost-effective method for

training its people in virtual simulations (Cavitt, Maly, & K.J, 1997). Within these

training environments, people can learn without the real-world limitations such as safety,

costs, training areas, or personnel (Cavitt, Maly, & K.J, 1997). In addition, simulations

2

allow testing scenarios that would not otherwise be possible such as flying an

experimental aircraft or testing the flight of a new weapon.

Problem Statement

Users and designers of real-time distributed systems need to understand the

effects that software architecture have on consistency. When considering latency of the

system, most research focuses on network latency exclusively. Although network latency

does affect the consistency of the simulation, it is only one aspect and other sources

should be examined. The architecture of the software may have significant impacts as

well. Therefore, this research studies the impacts that software architecture has on the

consistency of RTDS.

Interactive Simulations

The simulations of interest are often referred to by many different names. For

example, Live-Virtual-Constructive simulations (), Distributed Virtual Environments

(Zhou, Cai, Turner, & Zhao, 2003), networked Virtual Environment (Singhal & Zyda,

1999), RTDS all convey a similar type of simulation that share common characteristics.

Regardless of the term used to describe these simulations, they all have commonalities.

First, they are all distributed simulations, meaning they execute on separate physical

machines often located at different geographic locations. This means that data must be

shared across a network if the goal is to create a common shared virtual environment.

Second, they are all real-time simulations that read, process and update state values with

a specified amount of time. Most real-time “continuous” simulations executed on digital

computers update the state that represents the virtual environment in discrete time steps,

3

and these time steps must match a “wall clock” time or real world time. Because of this,

real-time simulations must meet timing deadlines. In other words, the simulation must

model the environment accurately at every discrete time step (Belanger, Venne, &

Paquin, 2010) and perform this task in sync with the wall clock. Last, the simulators

must be networked and share a single view of the modeled environment.

For a simulation to have a shared environment, it must have a shared sense of

space, presence, and time (Singhal & Zyda, 1999), and it must do so by communicating

state changes across a network. There are several standards for sharing data across the

network. The IEEE Distributed Interactive Simulation (DIS) is one of the

interoperability standards used as the basis for interconnecting individual real-time

simulations. DIS defines the architecture for communication so that various types of

simulations may be linked (Hofer & Loper, 1995). One advantage of DIS is that it allows

interoperability so that systems built on different platforms, from different vendors,

and/or from various services can all join in one simulation (Zalcman, 2004).

DIS-based simulations share a number of common characteristics. First, the

individual simulations that compose the distributed simulation execute and operate

autonomously and are responsible for maintaining the state of simulated entities-meaning

there is no central server to control the entire simulation (Murray, 2010). Each

application maintains its own view or state of the modeled environment. A state is “a

complete description of a virtual entity at a single moment in time” (Churchill, Snowdon,

& Munro, 2001). In addition, the term object must be defined. An entity or object is

often used interchangeably, and represents an element of the synthetic environment that

is created and controlled by a simulation application through the exchange of information

4

(Delaney, Ward, & McLoone, 2006). In this way, every simulator has its own virtual

world that tries to synchronize with every other participant’s virtual world. This is

possible only by exchanging state data with participants.

Real-Time Distributed Simulation Consistency

One important aspect of RTDS is consistency. Consistency refers to the

difference between all participants in RTDS. To maintain high levels of synchronization

or tight consistency there are tradeoffs. To maintain a tight consistency among all

participants, state data updates must occur often. However, if the state of a simulation is

broadcast to other simulations too often, the network can become flooded with traffic that

might result in degraded performance. If the simulation state is not broadcast often

enough, the simulation might become poorly synchronized, resulting in errors. An ideal

RTDS would be tightly synchronized which results in few errors present in the

distributed system. This kind of synchronization is something real-time simulations

strive to keep in an ideal system -- an absolute consistency. However, it is rarely

possible. It takes time to transfer each participants view (state space) and for the

receiving participants to process the state data and update their own environment. For

this reason, there has been some effort in the field to strengthen the synchronization in

real-time applications. These efforts focus on information exchange methods associated

with algorithms (e.g. dead reckoning) that smooth the difference between the

application’s internal state with that of outside states (Zalcman, 2004). These methods

help reduce network traffic by reducing the number of updates broadcast, while

improving the consistency of views throughout the environment. There is however a lack

5

of research in quantifying or characterizing the consistency of the real-time distributed

simulations. In other words, the approach has always been to improve the consistency

without knowing or quantifying the consistency itself. Furthermore, little research has

explored the affect of application (i.e., simulation) architecture structure and its

relationship to consistency measures.

Requirements for consistency may vary with each application. For some

applications, the consistency may be relaxed in comparison to others. For example, a

simulation may execute software on a host computer that models the virtual environment

for the purpose of training or experimentation (Murray, 2010). In the training world, the

consistency of a simulation is subjective, and the user is not directly concerned with the

latency, but rather the "feel" of the simulation. For example, a user may not see a

noticeable difference in views even if significant network delay is introduced, even

though the simulation contains errors and inaccuracies. In fact, some argue that the

absolute realism is not necessary for acceptable experiential uses of DIS (Dewar,

Bankes, Hodges, Lucas, Saunders-Newton, & Vye, 1996). Instead, DIS needs only to

give the users a good experience or proficiency in the training that they wish to receive

from the simulation (Dewar, Bankes, Hodges, Lucas, Saunders-Newton, & Vye, 1996).

In other words, if a user piloting an F-16 in real-time simulation releases a munition, the

accuracy of the munition's impact during simulation is not as important as the user

becoming proficient in the act-as the purpose for this simulation is for training. Although

this thinking may apply to some training applications, there are new applications

emerging in the analysis and test domains where understanding errors present in the

6

system should be better understood. For these domains, characterizing the shared state

consistency is important.

This research effort will give a better understanding of how the application

architecture affects the consistency of RTDS. By quantifying a consistency of a real-time

simulation, designers can properly address architectural parameters so the simulation

meets the application requirements. The impact to the Air Force community could be

significant as these systems are increasingly being used to support live test events and

system analysis.

Research Goals

This research effort accomplishes several goals. RTDS are typically designed

with concurrent executing threads that are responsible for updating the virtual

environment, sampling state space data, moving data onto and away from the network,

and updating the model or virtual environment. Typically these threads can be

categorized as producers and/or consumers of the state data being exchanged. The rates

at which each of these threads run can influence the consistency of the shared state data.

This research quantifies the effects that each of these four thread rates have on the

consistency of the state data. In addition, the results are expected to validate the research

performed by Hodson (2009). The following questions are answered:

1. What effect do the four thread rates have on the consistency of RTDS?

2. Are the thread rate effects linear?

3. How do the metrics total latency, state data age, export time, and export error

describe consistency?

7

Assumptions/Limitations

This research effort acts under some assumptions and limitations. The system to

be tested is modeled with threads. Each thread performs its function within a specified

period of time. The timers used have a resolution of 1 millisecond (ms); therefore, the

period of each thread is only accurate to 1 ms, and this must be reflected in the data

analysis.

Methodology Preview

To evaluate the software architecture, the essential aspects of a distributed virtual

simulation are emulated by building a skeletal application to be executed on a real

computer. This program was written in C++ using the Qt software framework. The

emulator models a single object with a fixed velocity that moves along a straight path.

As the object moves, differences in position between simulations are measured. The

emulation is multithreaded and each thread sets a timestamp on the state data allowing a

direct measurement of its age as it moves through the system. This experiment tests and

analyzes four factors: producer model thread rate, producer sample thread rate,

consumer receiving thread rate, and consumer model thread rate. To evaluate the

interaction between all of the factors, a full factorial design is used. There are four

factors, each with 2 levels. An Analysis of Variance (ANOVA) on each metric is

performed to assess the difference in mean ages of the state data. The data shows the

effect that each thread rate has on the consistency of the state data. In addition, the

validity of this model is compared against the analytic model developed by Hodson

8

(2009), which characterizes the performance of distributed simulations in terms of

temporal consistency.

Summary

In summary, dynamic RTDS are inherently inconsistent. Because it takes time to

communicate state data to all participants in a shared simulation, there will almost always

be some inconsistency in a frequently changing dynamic environment. There are a

number of factors, which contribute to a lack of consistency between participants in

RTDS. This research effort will examine a representative software architecture which

several adjustable factors and determine its affect on consistency measures. This

includes quantifying and modeling the thread rate effects on measurements of

consistency for RTDS to better understand and improve shared state consistency.

Chapter 2 examines the factors affecting consistency, and the related research

efforts in characterizing the consistency of RTDS in detail. Chapter 3 explains the use of

an emulator to collect data on the metrics of consistency, and explains the methodology

in detail. Chapter 4 discusses the results obtained from an experimental design that uses

the emulator to represent the essential attributes of a distributed simulation. Finally,

Chapter 5 presents the conclusions from this research effort.

9

II. Literature Review

Chapter Overview

This chapter discusses consistency in real-time distributed interactive simulations.

With a focus on the real-time distributed simulations (RTDS) that are used by the

Department of Defense (DoD) that operate and communicate using the Distributed

Interactive Protocol (DIS). The consistency of the shared state data for these simulations

depends upon several factors, including network latency, intercommunication protocols,

and software architecture. In particular, many simulations are multi-threaded

applications organized using the model-view-controller design pattern. The thread rates

of the software design play a significant role in determining the state data consistency and

are the focus of this research. Furthermore, this research builds upon the relevant work

of Hodson (2009), which analyzes temporal consistency of a RTDS. Finally, the

experimental design and collection of data is previewed. To collect data, a RTDS is

emulated by constructing an application that models the thread interactions. The

emulator allows direct measurements of consistency. The results of this experiment aid

in quantifying and modeling the relationship and role that each thread plays with respect

to different measurements of consistency of the simulation.

Terminology

The terminology associated with describing the different views and the

propagation of data through a simulation are complex. This section defines and expands

upon terms used throughout this document.

10

• System - an object or collection of objects whose properties we wish to study

(Fritzson, 2003).

• Simulation - the imitation of the operation of a real-world process or system over

time (Banks, Carson, B.Nelson, & Nicol, 2001). This term is used to refer to a

computer simulation in this document. This term needs further clarification as it

may refer to a single computer program running on an individual machine or it

may refer to the collective sense of the term where a simulation constitutes

multiple computer programs connected through a network. Simulation may be

used interchangeably in these cases.

• Model - a representation of the system; in this case the system is the software

architecture of real-time distributed simulation.

• Consistency - the difference between the models of all participating simulation

programs.

• Networked Virtual Environment (net-VE) - a software system in which multiple

users interact with each other in real-time (Singhal & Zyda, 1999). Each user

accesses his or her own workstation or console using it as an interface to the

virtual environment (Singhal & Zyda, 1999).

• Distributed Virtual Simulation (DVS) - a collection of independent computer

simulations that appears to its users as a single coherent system (Tanenbaum,

2007).

11

• Real-World Clock or Wall Clock - a clock in the real world and not within a

simulation. In other words, if the simulation starts at 3:00 PM CST and ends at

3:05PM CST then the simulation was executed for five minutes according to a

real-world clock. Simulation clocks are based on the internal clock of the

computer they run on. The advancement of time within a simulation does not

necessarily follow a real-world clock.

• Real-Time Distributed Simulations (RTDS) - simulations that are connected over

a network and meet real-time deadlines. These simulations are referred to as

“real-time” for two reasons. First, the simulation advances in discrete time steps

that match a real-world clock and external systems connected to the simulation

operate as though they are connected to a real system (Roy E. Crosbie, 2007).

Following a real-world clock allows the simulation to seem consistent across

multiple computers and gives the illusion that all users share the same space and

time.

• Modeled Virtual Environment - a virtual world as modeled by the simulation.

This term may refer to a represented environment or a single virtual environment.

A single represented environment is executed on a workstation that is networked

to other workstations with represented environments.

• State Space - the sum of all variables that make up the modeled virtual

environment in a computer simulation.

12

• Shared State Data - information exchanged between networked simulations,

allowing each simulation to model the virtual environment. This information

typically contains more than just information of a single entity. A simulation’s

state data may contain the position of many entities, weather conditions, terrain

data, and the time of day for example. In this type of dynamic simulated

environment, this information changes with time, and therefore, needs to be

shared by every connected node (Singhal & Zyda, 1999). Described another way

state data contains snap shots of the modeled virtual environment from any one

simulation.

Shared View

The main goal of a networked RTDS is to provide the user with a shared view of

a virtual environment. Ensuring that this view is consistent with every other view is one

of the major challenges for software engineers. Consistency is a concept often seen in

video games which simulate a physical world where players see the same objects. The

requirement is referred to as WYSIWIS, or “What You See Is What I See” (Ravindran,

Sabbir, & Ravindran, 2008). If an object in the simulation does not match its position in

another player’s simulation then there is a loss of player cohesiveness or what is called

“consistency.” The concept of “absolute consistency” is discussed later. If all players

see exactly the same copy of the game state at the same time, then the game is said to

have absolute consistency (Ravindran, Sabbir, & Ravindran, 2008). The same is true for

any RTDS. As this chapter discusses, consistency is affected by several different factors

and is the primary focus of this research.

13

Defining Consistency

Consistency the differences in state space from one modeled environment to the

next. As a user interacts with a simulation their virtual environment changes. The

changes must be reflected in all participating virtual environments. This shared virtual

environment can be viewed as a collection of producers and consumers. For example, if

a thread is dedicated to broadcasting local simulation state data to other participating

simulations within the distributed system, this can be characterized as a sampling of local

state space data. From there, consumers of that state data will receive that data and

update their own local state information. Each simulation then uses their state space to

model and draw 3D graphical views to present the virtual environment on a monitor or

projection system. The inherent problem with this situation is that by the time consumers

receive new updates, the producer’s modeled environment may have already changed the

value just communicated, which results in differences among the shared simulated

environments (i.e., an inconsistency develops).

In a dynamically changing simulated environment, state data will have always

“aged” by the time it is consumed, where “aged” simply means time has passed since the

data values have been updated. Understanding how consistency affects the quality of the

simulation, and what can be tolerated is associated with the simulations intended purpose

(i.e., requirements). How “old” can the data be and still be considered valid is an

underlying question to be answered. For much of the literature on this subject, to answer

the question the age of the state data is examined, and a couple definitions for consistency

are defined: absolute and temporal consistency. For a moving entity (e) in a RTDS,

𝑃𝑖𝑒(𝑡) represents the position of the entity, where t represents the wall-clock time, and i

14

represents the simulation site the object is at. If 𝑃1𝑒(𝑡) = 𝑃2𝑒(𝑡) = ⋯𝑃𝑛𝑒(𝑡) for n number

of simulation sites then the application has absolute consistency (Zhou, et al., 2003).

Temporal consistency is different from absolute consistency in that the data doesn’t have

to be the same throughout the participating simulations, but they must be within a validity

interval (𝜃𝑉𝐼) . The definition for temporal consistency also refers to the “age” of the

data. For a shared data object θ, an application is temporally consistent if 𝜃𝑇𝑆 + 𝜃𝑉𝐼 ≥ 𝑡,

where 𝜃𝑇𝑆 is the creation timestamp and 𝜃𝑉𝐼 is the validity interval (Hodson, 2009).

Tradeoffs for Consistency

It is possible to maintain absolute simulation consistenty, but the tradeoff is

simulation responsiveness. Sandeep et al. (1999) present the idea of Consistency-

Throughput Tradeoff. This concept refers to the tradeoff between ensuring absolute

consistency as opposed to allowing the dynamic shared state to change frequently

(Singhal & Zyda, 1999). The only way to ensure absolute consistency is to not allow the

state to change until all connected users have the same updated and shared state. In order

to ensure this level of consistency, updates may take a long time. These long updates

may be problematic for a simulation modeling a system at a high frame rate. For

instance, if the network delay between two users is 150 milliseconds (ms), then to

confirm that both users have the same shared state requires two confirmations across the

network. This confirmation will take at least 300ms, which for a fast moving entity is

significant. In fact, many real-time simulations require frame times in the order of

milliseconds, and for some applications frame time rates are less than 10 𝜇𝑠. Therefore,

for a simulated environment to be consistent it must be modeled at a rate that meets the

15

application’s requirements. For this reason, absolute consistency poses a problem for

real-time distributed simulations attempting to model virtual environments at fast rates.

On the other hand, if absolute consistency is relaxed, then the simulation is less accurate

in representing the position of entities. This is acceptable for some simulations. For

example, in a flight simulator it is more important to simulate a smooth motion rather

than simulate the position accurately (Singhal & Zyda, 1999). Therefore, the tradeoff is

that absolute consistency is not maintained, but the simulation states can change at a

speed that more accurately models and matches a real world clock. This tradeoff poses a

problem for real-time distributed systems that wish to have both fast updates and a high

degree of accuracy.

Consistency Versus Accuracy

Accuracy is related to consistency but the terms are not the same. The accuracy

of the simulation measures how realistic the simulation matches the real world system it

models whereas consistency is the difference between simulation views. In other words,

a simulation may be grossly inaccurate but consistent with every other participating

simulation. The accuracy of a real-time simulation is based on the dynamic

representation of the system (Belanger, et al., 2010). As discussed earlier, there is a

tradeoff for accuracy in a simulation that has a high rate of change. Accuracy is also

based on the amount of time that it takes to model the system (Belanger, et al., 2010).

The difficulty is in producing and processing model information within a given discrete

time step (Belanger, et al., 2010). Therefore, if the simulation is designed to model the

virtual environment every 10ms, then the computer must perform the following in less

16

than 10ms: read input and generate outputs, solve model equations, exchange results with

other simulation nodes, and wait for the start of the next (Belanger, et al., 2010). If these

tasks are not met within time, inaccuracies may occur.

Factors of Consistency

Network Latency

One way to keep a tight consistency among nodes is to frequently transmit

updates. However, there is another tradeoff when considering frequent state data

updates. First, more nodes means more broadcasting, which can flood the network.

Depending on the physical characteristics of the network, this frequent communication

may limit the number of connected nodes, unless the consistency requirements are

relaxed. Second, the more state data that is broadcasted, the more data that needs to be

processed, and much of this data may be extraneous information (Singhal & Zyda, 1999).

For example, if an entity broadcasts it position, but it is on the other side of an

obstruction and cannot be seen, then much of this state data is not needed (Singhal &

Zyda, 1999). In addition, there is latency associated with transmitting state data updates

to other nodes.

Another significant factor to poor consistency within a simulation is network

latency or lag (Delaney, Ward, & McLoone, 2006). Network latency for the most part is

unavoidable. Furthermore, network latency is increased when simulators are dislocated.

New technologies such as fiber optics have helped reduce network latency, but lag will

always be associated with network communication. Therefore, it is important to be able

to characterize latency and determine an acceptable threshold.

17

When examining the latency of a network, one must examine three aspects: bit

propagation, packet processing and packet propagation delays. Large propagation delays

relates to the physical speed of the transmission and cannot be avoided (Delaney, et al.,

2006). Packet propagation delay refers to the “time required for all bits in a packet to be

transmitted across the network from source to destination node considering only the inter-

node bandwidth” (Delaney, et al., 2006). This delay can be reduced by increasing the

network bandwidth (Delaney, et al., 2006). Packet processing delay is the time

associated with the processing of the bits of data as it leaves the source and arrives at the

destination. This delay is by reducing the quantity of data on the network. Reducing the

quantity of data is accomplished by improving routers (Delaney, et al., 2006). For both

the packet processing and propagation delays, reducing the number of state updates

would most likely help, and is one way to improve network latency.

Jitter is another area of concern when it comes to characterizing the latency of an

RTDS. Jitter is referred to as the unpredictable variation in latency with time (Delaney et

al., 2006). In fact, jitter has a greater impact on performance than does latency (Delaney

et al., 2006). It has been found that both performance and user strategy are affected by

latency (Delaney et al., 2006). Therefore, examining and characterizing the latency are

important.

Message Ordering

Another source of poor consistency is due to message ordering. Tolk (2012)

explains why consistency suffers when messages are received out of order. Either there

is an external delay such as a network lag, or there is an internal latency that causes the

messages to be received out of order. Figure 1 shows an example of messages which are

18

received in the wrong order due to internal latency (Tolk, 2012). The figure shows three

icons each representing a networked simulator to include the Army, Air Force, and Navy.

Imagine a scenario where an army tank is attacked by Navy artillery while an Air Force

unmanned air vehicle (UAV) is observing. The Navy simulator sends out its state data to

the Army and Air Force simulators notifying them that it has fired on the Army’s tank.

The Army simulator acknowledges and updates its environment, resulting in its tank

being destroyed and sends this information out to both the Air Force and Navy. Due to

latency in the message passing in this scenario, the Air Force UAV may see the Army

tank destroyed before it sees the Navy Artillery firing. This kind of problem is known as

a “time anomaly,” and is corrected by managing the order in which it receives messages.

Figure 1: Time Anomaly (Tolk, 2012).

19

State consistency is also dependent on interacting model resolutions. Figure 2

shows Tolk’s example of what is called “temporal inconsistency” (Tolk, 2012). If two

simulations are connected, and the simulation on the left models an entity in one-minute

intervals, while the simulation on the right models the entity at 15-minute intervals, a

temporal inconsistency may exist (Tolk, 2012). The temporal inconsistency occurs

because two truths exist, the entity as represented on the left, which is updated at a faster

rate, and the entity on the right, which is updated at a much slower rate. One plausible

solution in this situation is to give control of this entity to one of the simulations so both

the left and right see a consistent view. However, this approach may result in a larger

inconsistency (Tolk, 2012).

Figure 2: Temporal Inconsistency (Tolk, 2012).

Software Architecture

Another source of inconsistency is introduced by the architecture of the

simulation software (Hodson, 2009). Most real-time simulations are created as

multithreaded processes. That is, instead of producing, consuming, transmitting, and

receiving state data sequentially, most software applications perform these processes

20

using threads to take advantage of multiple core processors. Experience has shown that

using a computer process with multiple threads to execute a task is better than a single

sequential process (Bottazzi & Salati, 1991). A variant of the model-view-controller

(MVC) design pattern is typically used to create these types of multithreaded simulations

(Hodson, 2009). With this architecture, work is divided among the threads to draw

graphics, model the environment and process network activity (Hodson, 2009). State

data is touched by each of these threads from the moment it is produced to the moment it

is consumed. Therefore, each of these threads potentially adds latency and affects the

consistency of the simulation.

Relevant Research

Abstract models help in understanding the effects that software architecture has

on state space consistency. Figure 3 shows an aggregate model for the software

architecture used in Hodson’s analysis of state space consistency using a Petri net model

(Hodson, 2009).

21

Figure 3: Producer, Network, and Consumer Models by Hodson (Hodson, 2009).

 Each thread has a particular task and the threads are divided among the producer

and the consumer tasks of the simulation. As one simulation produces state data and

transmits this data through a network, another simulation acts as the consumer and

processes the incoming state data. In Hodson’s model (2009), the first thread or the

model thread calculates and updates the environment local to the producer (i.e., updates

the position of dynamic entities, etc). Snaps shots of this environment are synonymous to

state space—a stored state of all modeled environmental variables. The next thread, the

sampling thread, samples this state space and passes state data to other nodes (i.e.,

22

simulation) through a network infrastructure. These nodes act as consumers that contain

a receiving thread to read the state data and update their own local state space. This is

synonymous to receiving updates from all other nodes and then storing that information

locally. The consumer model thread then uses the local state space to update its own

modeled environment. Through this process, each node transmits and receives state data

to create a shared virtual world in which all simulation instances or nodes view the same

modeled environment.

Measuring Consistency

This research effort examines the effects that thread rates have on consistency.

However, the term consistency can be associated with many different measures. For

example, one possible measurement of consistency is the difference between the

positions (i.e., data values) of an object modeled in two simulations, known as export

error. Assuming this object is moving with constant velocity this may be a fair

measurement of consistency in relation to thread rates. However, if the object is not

moving then latencies really do not affect the consistency (because nothing is changing);

thus, this metric does not always relay a true picture of the effects of thread rates. It is

also complicated by the fact there are normally multiple objects modeled in simulations.

To help characterize consistency to the fullest, this research effort examines four metrics

that best describe consistency. These measurements are total latency, state data age,

export time, and export error.

The system under test is a producer-consumer model that creates and consumes

state data. The component under test is the thread architecture. The rates of the threads

affect the consistency metrics. Therefore, the thread rates will be varied while examining

23

the responses of the system. The methodology of this research effort will use an

aggregate of Hodson’s three models: Producer Model, Network Model, and Consumer

Model (Hodson, 2009).

The System Under Test (SUT) includes the producer component and consumer

component analogous to the producer and consumer models used by Hodson (2009).

This system represents two networked simulations that are both producers and consumers

of state data. The simulation architecture itself is an important aspect of this system. The

architecture includes thread rates and state space of both the producer and consumer

components. The thread rates affect how the state data propagate throughout the system

until it is processed by the consumer model thread into the consumer’s state space. The

component under test (CUT) for this research is the thread architecture component. This

research effort will evaluate the system using an emulator that allows direct

measurements for each of the four metrics. It is hypothesized that the characterization of

the threads will match and build upon the work of Hodson (2009). Models are created to

predict the metrics of consistency. The next chapter discusses this methodology in detail.

Conclusion

This chapter has examined the shared state consistency problem of real-time

distributed simulations. Due to network latency and the software architecture, there is

potentially a difference in the shared state data. This difference between producer and

consumer state data represents the consistency between them. Closely related research

performed by Hodson (2009) used a Petri net model to simulate a consumer/producer

system to characterize the age of the state data. This research effort will use actual

24

threads to model and emulate a similar system and make direct measurements of the state

data. The expected result of this experiment are models showing the relationship and the

effects of each thread rate. The impact of this research is a better understanding of how

application architecture affects the quality and/or consistency of the shared simulation

state data. The next chapter discusses in detail the method by which data will be

collected and analyzed.

25

III. Methodology

Chapter Overview

This chapter discusses the methods used to characterize the state data between

real-time distributed simulations. First, a brief background is provided to define and

discuss the problem. Second, the goals of this research effort and the objectives are

presented. Next, the system, its services, parameters, metrics, and workload are

introduced. Finally, a discussion of the evaluation technique, the experimental design,

and the data analysis process is presented.

Problem Statement

One of the challenges and strategic goals with real-time distributed simulations is

maintaining the consistency of the represented environments. Real-time distributed

simulations (RTDS) must pass state data in order to correctly maintain the same

represented environment. The state data used by each participating simulation provides a

“view” of the represented environment. State space inconsistencies are the measured

differences between each participant’s view in a simulation. Simulations may have

inconsistencies because the data cannot be transferred between simulations

instantaneously, thus resulting participating simulations potentially using different state

data. This research will examine the differences between these views. The problem is

broken into a simpler model of producer and consumer called the State Space

Consistency Model. This model is used to examine the differences of consistency

between the consumer’s view and the producer’s view. The purpose of this research is to

characterize the consistency of the state space affected by the software architecture of the

26

simulation. There are several metrics used to measure consistency. This effort produces

a model for each measurement of consistency and should follow and support the work

performed by Hodson (2009).

Approach

Typically, the simulation is designed with a multithreaded architecture to allow

the receiving, sending, and processing of state data to run concurrently. Figure 4 shows

an aggregate model for the software architecture, which is based on Hodson’s analysis of

state space consistency using Petri net (Hodson, 2009).

Figure 4: Multithreaded Architecture.

The state space consists of the variables that define the state of the modeled

environment. Depending on the environment, whether it is modeling an aircraft or a

missile, the variables change over time. For example, if this application were modeling

an aircraft, the state space variables would likely represent the speed, altitude, and

position of the aircraft. Other environment defining variables may include, weather,

temperature, and terrain. The collection of all these variables define the state space of

27

this application. Real-time simulations update their state as time progresses and matches

time on a real-world clock.

Figure 4 shows the producer and a consumer state space. The producer model

thread (T1) updates the producer state space; it updates the data associated with the

systems it is simulating. The broadcasting of data through a network to other simulations

is represented as a sampling of state space (T2). T2 transmits this state data over a

network to a consumer. The consumer then incorporates the producer’s shared state data.

Finally, the consumer model thread (T4) updates the consumer state space based on the

updated state. It is at T4 that the state variables from the producer are consumed (i.e.,

used) in the consumer’s modeled environment.

Since real-time applications act as both producers and consumers of state data, it

is easy to imagine that this process is bidirectional between two simulations as both

receive each other’s state data creating a shared view of a common modeled environment.

In a networked system consisting of more than two simulations the same process takes

place with a set of producers and consumers. The consistency of the shared modeled

environment is ultimately dependent on the difference between the producer and

consumer modeled environments. This consistency is more difficult to define and

measure with multiple consumers and producers; thus, the analysis only considers a

single producer and consumer. Even with only one consumer and one producer, the

consistency of the modeled environment can be difficult to directly measure. One

method for measuring the inconsistency involves examination of the differences of

timestamps of state data from different points in the system. Typically, this is referred to

as “age” because it measures the time of the state data from one point to the next in the

28

system. However, age is a vague term as it could apply to several different metrics. In

addition, just because the data has aged doesn’t mean there exists inconsistencies in terms

of data value differences. However, the system examined here is a dynamic system in

which an entity is modeled with a constant rate of movement. Therefore, any time

difference or aging in state data equates to an inconsistency in state data. There are

several ways to define consistency, which are discussed in the performance metrics

section.

System Boundaries

The System Under Test (SUT) includes the producer component and consumer

component, analogous to the producer and consumer models described earlier. The SUT

system represents two networked simulations described as one producer and one

consumer. The simulation architecture itself is an important aspect in the SUT. The

architecture includes thread rates and state space of both the producer and consumer

components. The thread rates affect how frequently variables are updated and how data

propagates through the system until the update occurs in the consumer’s state space. The

Component Under Test (CUT) is a single component within the SUT that will be varied.

For this research the CUT is the thread architecture component as shown in Figure 5.

29

Figure 5: Real-Time Distributed Simulation System.

System Services

The service the SUT provides is a distributed interactive virtual environment.

State data is used to create the simulation’s model environment. Thus, every view or

simulator connected should have a shared version of this model environment. The

success of the service is determined by the application. If the application is for training,

the consistency is relaxed allowing the environment to be responsive enough that the user

does not notice inconsistencies within the virtual environment. However, for test and

evaluation purposes, it is essential that the environment and consistency are high enough

that the simulation models a real-world system to meet the objects of the experiment.

The resulting state space’s consistency is dependent upon the components within the

SUT.

30

Workload

The workload for the system is associated with the amount of state data that is

produced. The rate at which the model is updated by T1 and the sampling rate of T2

influence the workload. In addition, a higher node density and a higher number of nodes

connected in the system results in more network communication, increasing the amount

of data each node must process. The size and broadcast rate of state data also increases

the workload of the system. The additional workload directly affects the level of

consistency among every shared environment of each connected consumer/producer.

Conversely, with fewer nodes, fewer data is processed by the system. In a typical real-

world application of this system, the workload is application specific and widely varies.

Performance Metrics

There are many measures that can be used to define consistency, this research

effort uses total latency, state data age, and export time shown in Figure 6. There is a

fourth and separate metric that measures the difference in state data values called export

error. Export error is measured by comparing the position of an object in the producer

view versus the consumer view. For this particular experiment, export error is influenced

by the rate of change associated with a single moving entity (i.e., object). The faster an

object moves, the greater the export error. In addition, export error equals the export time

multiplied by the velocity of the moving object.

 The measurements are shown in Figure 6. The colored dots in the figure

represent timestamps produced as each thread touches the state data. These timestamps

act as a means to find several of the performance metrics. Note that in Figure 6, as

31

drawn, there is a symmetric pattern for all the timestamps. This is rarely the case, but

helps clearly describe the metrics in this context.

Figure 6: Performance Metrics

The following metrics are used to evaluate the performance of the distributed real-

time emulation.

• Total latency (ts3-ts2) - the first measure is total latency of the state data. The

difference in time from the point where state data is sampled at T2 (ts2) to the

time it is received by the consumer at T3 (ts3) is defined as the total latency.

Essentially, this is the time it takes to sample the producer’s state data and

transmit it across the network to the consumer (ts3-ts2), which then stores the

data.

32

• State Data age (ts4-ts1) – the amount of time it takes state data to propagate

through all four threads and how often the data is updated. This is from the time

state data is updated at T1 (ts1), to the time it is consumed and used by T4 (ts4).

• Export time - neither total latency nor state data age account for the direct

differences between producer and consumer state data. For this metric, the

creation time of the state data used presently in the consumer and producer is

compared. Figure 6 graphically shows this metric as ts1 subtracted from ts1',

where ts1 is the creation timestamp of the state data currently used by T6, and ts1'

is the creation timestamp of the state data currently used by T1.

• Export error - in addition to comparing timestamps of state data, it is possible to

compare the values of state data variables between producer and consumer. The

difference in one variable in a real-time simulation may not be a complete

measure of consistency, because it is only one piece or small subset of variables.

However, for this experiment, the emulator models a single entity and thus the

object and its movement is the entire state space. Therefore, the difference in

position of the object between producer and consumer is a good indication of the

consistency. Therefore, the difference in an object’s position between producer

and consumer is another measure of consistency, and is defined as the export

error. This metric is recorded for every update received by T4.

33

Parameters

The parameters discussed below affect the performance of the real-time simulated

environment.

• Model Thread Rate (T1) - the rate (hertz) at which the producer node updates its

local state space by thread one.

• Sample Thread Rate (T2) - the rate (hertz) at which the producer’s state space is

sampled and broadcast into the network by thread two.

• Receiving Thread Rate (T3) - the rate (hertz) at which the consumer node receives

data from the network and stores it in the consumer’s state space by thread three.

• Model Thread Rate (T4) - the rate (hertz) at which the consumer node samples its

state space by thread four.

• Thread Offsets - the random time offsets between executing threads, which

captures the asynchronous dynamics of multi-threaded applications. The offset

time (ms) between threads affects the performance metrics. The offset times are a

modulus of each thread rate and are a result of initial startup dynamics associated

with real multi-threaded applications.

Factors

The following are the factors used in this research and each factors' corresponding

levels. A summary of each factor level is found in Table 1.

34

• Producer Model Thread Rate (T1)

• Small – 50 Hz

• Large – 100 Hz

• Producer Sample Thread Rate (T2)

• Small – 5 Hz

• Large – 20 Hz

• Network Latency - a measureable unit of time delay experienced over a network.

In a real geographically distributed simulation, network latency plays a significant

role. However, for this experiment network latency is not a factor, and assumed

to be negligible or near zero. In fact, for the emulator created, the data is placed

on the network by the producer and then immediately received by the consumer.

• Thread Delay - a thread delay is the time added before the start of a thread to

generate a relative thread offset between itself and the thread started before it. A

thread delay is not a direct factor in this experiment, but is related to the thread

rate. To properly emulate the initial conditions a real-time distributed simulation

it is necessary to apply relative offsets between each thread on startup based on

the respective thread rate. The offsets are accomplished by adding a random

delay before the start of T2, T3, and T4. The delay for each thread is equal to a

random number in milliseconds modulus the associated thread period (e.g., for a

10 ms thread period, the thread delay can be a random value ranging from 1 to 10

ms).

35

• Thread Offset – the thread offset is the relative time between two threads and is

not a factor in this experiment but results from thread delays. The thread delays

are not necessarily equal to the relative thread offsets. This is because the threads

are cyclic and thus the thread offsets are equal to the thread delay modulus the

previously started thread’s rate (e.g. for a thread delay of 48 ms for T2, where T1

has a period of 20 ms and T2 has a period of 50 ms, the first relative offset

between T1 and T2 is 8 ms). Furthermore, thread offsets may vary with time.

The difference between thread delays and thread offsets are shown in Figure 7.

Figure 7 shows a thread delay of 48ms is added before the start of T2 relative to

T1. Because T1 executes every 20 ms, the first relative thread offset between T1

and T2 is 8 ms. Notice that this thread offset varies with time. Since the next T2

execution is at 98 ms, the next relative offset between T1 and T2 is 18 ms.

• Receiving Model Thread Rate (T3)

• Small – 5 Hz

• Large – 20 Hz

• Consumer Model Thread Rate (T4)

• Small – 50 Hz

• Large – 100 Hz

36

Figure 7: Relative Offsets.

Evaluation Technique

To evaluate the system, the SUT was emulated by a software application to

represent the essential architectural characteristics of a real-time distributed simulation.

The emulator was built using C++ application based on the Qt framework. As most real-

time distributed simulations use a multithread architecture, the emulator uses this same

architecture and models the producer and consumer components as shown in Figure 7. In

this experiment, the emulator models a single point object, which moves along a line at a

fixed velocity in 2-D space. The path of the object uses the following physics equation

for movement: 𝑥 = 𝑣𝑡 + 𝑥𝑜, where x is the new position of the object, v is the velocity, t

37

is the time, and xo is the initial position. Thread 1 (T1) is responsible for calculating and

updating the object’s position. Thread 2 (T2) samples the state space and transmits the

position information to the consumer. The state data is then sent over the network and

received by T3, which receives and stores the state data. The state data then moves to the

final stage where T4 consumes or uses this data. There is difficulty in measuring the

differences in timestamps between producer and consumer, because in a real-world

simulations, each are executed on two physically separated machines, each with their

own local clock. The local clocks, typically, cannot be perfectly synchronized, thus

introducing error. To eliminate this obstacle, the emulator simulates the entire system-

both producer and consumer-using one application, on a single machine, which enables

the use of a single common time reference – this resolves a fundamental problem in

measuring state differences without introducing the complexities of different time

references. In addition, by using an emulator on a single machine, a shared memory

block can be used to make comparisons (e.g., compare the position of the object as

modeled by the producer and consumer at the same point in time).

Previous research by Hodson, looked at modeling the system using a Petri net

model and analyzing the age of the state data from the creation and consumption from

producer to consumer (Hodson, 2009). This research examined the direct

experimentation of a real-time emulator with additional code added to record time stamps

that allowed direct measurements in the differences of these timestamps. The resulting

data was analyzed and a model was developed to estimate the performance of the system

in regards to expected consistency, given thread factors. The results were compared and

38

validated using the analytic model from Hodson’s work (Hodson, 2009). The trends

were predicted to reveal the same general behavior of the system.

Experimental Design

Obtaining Measurements of Consistency

Figure 7 is an example of a producer/consumer network model and demonstrates

three of the measurements of consistency. The example depicts the modeling of a simple

object moving along a straight path with a constant velocity. The figure shows the state

data consisting of the following state variables: position (x), initial/last position (xo),

velocity (v), acceleration (a), timestamp 1 (ts1), timestamp 2 (ts2), timestamp 3 (ts3), and

timestamp 4, (ts4). In Step 1, the producer model thread, T1, updates the producer’s

model using the equation for motion. The object starts with an initial position of zero

meters, a velocity of one meters/second and time equal to zero seconds. The state data

variables are then updated at a regular frequency.

39

Figure 8: Multithreaded State Space Model Example.

Step 2 begins with T2 sampling the state data from the producer state space. T2

does not manipulate the data in any way and the only addition is T2’s own timestamp.

T2 then transmits the new data across the network to the consumer, which takes place in

Step 3. The consumer receiving thread, T3, receives the transmitted state data in Step 4,

adds T3’s own timestamp to the state data, and then updates the consumer state space.

Finally, in Step 5, the consumer model thread, T4, samples the state space, and adds its

own timestamp. T4 then uses the current state data. The consumer model then shows the

position of the object to be at 0m with a velocity of 1 m/s. The consumer model can be

thought of as a second real-time distributed application; modeling the object in the

40

producer model. Therefore, the modeled environment is of a simple object moving in a

straight path that is shared by both the producer and consumer nodes.

Once the object modeled by the producer is represented in the consumer, an

inconsistency in data between the models results from the time lapsed from when data

was updated to when it is available for use. The total latency is found by subtracting ts2

from ts3, which equals 30 ms for this example. In other words, it took 30 ms to

transfer/deliver the state data to the consumer. The export time is found by subtracting

ts1 from ts4, which equals 70ms.

Measuring the time differences of state data is just one aspect of consistency. The

difference between state variables in both producer and consumer views also is a measure

of consistency. A difference in state data time does not mean the simulation has poor

consistency. However, a difference in state data time means there is a potential that the

state variables have changed. For example, if the object is not moving in the simulation

then absolute consistency could be obtained even if there were significant delays in

transmitting state data from producer to consumer. Therefore, the consistency depends

also on the rate of movement of the objects being simulated. Following the example

above, the data now used by the consumer indicates a position of 0 m. This is evident

because it took in this example 70 ms for the state data to propagate from T1 to T4.

Therefore, state data used to create the consumer model is 70 ms old. In addition, the

position of the object has changed from the viewpoint of the producer, depending on the

velocity of the object simulated. For example, if the velocity of the simulated object is 1

m/s and T1 updates the producer model every 10 ms, then after 70 ms the position of the

object in the producer is 0.07 m while in the consumer it is 0 m. This error in the object’s

41

position is known as export error. All of these descriptors of state data - total latency,

state data age, export time, and export error - represent metrics of consistency between

the producer and consumer. Furthermore, the rate at which each thread updates

contributes to all these measures of consistency. It is noteworthy to mention that the

export error is dependent upon the movement of the object to include velocity and

acceleration. For example, if the object had no velocity and was simply stationary, then

the position would be the same in both the producer and consumer models; thus, they

having an absolute consistency according to that measurement. If the object had a high

velocity, with slow running thread rates, then the export error would be significant; thus,

the consistency in this situation is often referred to as a loose coupling between producer

and consumer.

 Full Factorial Design

To evaluate the interaction between all the factors, a full factorial design is used.

There are four factors, each with 2 levels as shown in Table 1.

Table 1: Factor Levels.

Factor T1 Rate T2 Rate T3 Rate T4 Rate

Level 1 50 Hz 5 Hz 5 Hz 50 Hz

Level 2 100 Hz 20 Hz 20 Hz 100 Hz

A full factorial design requires 24 = 16 configurations. In addition, each run of

the emulator will collect 100 data points. In other words, 100 datum packets will be

propagate from T1 to T4. The averages for each of the metrics will be recorded. The

42

emulator will be run by a script directing the emulator to shut down and restart in order to

create new offset times and mitigate any unknown factors due to initial conditions. The

script runs the emulator 1,000 times for each configuration, where a configuration is a set

thread rate of T1, T2, T3, and T4. This means, for a 24 full factorial experiment, there

will be 16 thread rate configurations. An average for each measure over the 1,000 runs at

each configuration is recorded. Sufficient statistical basis for analysis is expected to be

achieved with no more than five replications at 90% confidence. This results in 100,000

data points for each configuration, or 1,600,000 data points for each replication. Each

iteration runs from the point where the first node produces the state data to the point

where the second node consumes the data, and then repeating this process for 100 datum

packets. Each producer/consumer node is modeled using C++ code and Qt framework

running on Windows 7. Both an Intel Quad-Core 9550 and an Intel Six-Core i7-3930K

processor were used.

Analysis

The data analysis supports the research goals to quantify the consistency affected

by the architecture of a real-time distributed simulation. This consistency of the system

is defined by difference of state data between producer and consumer. The timestamp

difference of the state data is related to this potential difference. To assess the difference

in mean timestamp differences of the state data, an Analysis of Variance (ANOVA) for

each experiment is performed. It is presumed the thread rates have a significant role in

determining the state consistency. In addition, the validity of this model is compared

against the analytic model used by Hodson (Hodson, 2009).

43

Summary

Real-time simulations need to be accurate for use in emerging tests and analysis

domains. Accuracy requires the simulated shared environment to be consistent. What is

the effect that thread rates play in affecting consistency of a real-time distributed

simulation? This goal of this research effort is to answer this question by emulating a

real-time distributed simulation and collecting the data associated with the consistency of

the state data as the data moves from the producing application to the consuming

application. The experimental results from this research are expected to validate

Hodson’s (2009) analytic work on state space consistency. In addition, the models

produced here are expected to be linear.

This chapter defined the methodology used in this research to evaluate and

quantify the latency of state data due to the software architecture of a real-time

distributed simulation. The system under test includes the producer, consumer, and a

network. The service of this system is consistent state data. The metrics to measure the

system include mean delay of the state data, throughput, and state data error. This

experiment emulates a real-time distributed simulation and models the architecture of the

system to analyze the effect thread rates have on the consistency of the state data.

Finally, a full factorial experimental design is implemented and a method of analysis is

provided.

44

IV. Analysis and Results

Chapter Overview

This chapter presents the results of the full factorial design using an emulator of a

real-time distributed simulation (RTDS). This chapter also describes the data collecting

process from the use of the emulator. After the data is collected, it is analyzed to

determine how the thread rates affect the recorded metrics. This work includes the

analysis of variance (ANOVA) results showing the significance of each thread rate,

depicted several linear models. Given that four metrics were used to measure

consistency, four linear models were developed. Thread rate significance varies among

each metric, but overall it is evident that certain thread rates do significantly affect the

responses. Furthermore, the results complement the research by Hodson (2009). Finally,

results from this experiment aid in the understanding of consistency in RTDS used for

testing and analysis purposes.

Process of Collecting Emulator Results

Overview of Emulator

The purpose of the emulator is to model a simple RTDS system. The emulator

was created in C++ code and uses the Qt framework. Specifically, the emulator models

four threads—producer model thread (T1), producer sampling thread (T2), consumer

receiving thread (T3) and consumer model thread (T4). The emulator models a single

point object moving along a straight path with a velocity of 1 m/s. Each thread executes

at a specified rate and offset, with the exception of T1, which has no offset. As each

45

thread becomes active it performs its designated function and state data moves through

the system. Threads are started sequentially in the emulator with a random offset delay

between each thread, which represents the asynchronous startup dynamics of multi-

threaded applications. The four thread rates are used as factors, in 16 unique

configurations, to constitute a 24 full factorial design. For each of the 16 configurations,

1000 runs were executed. Each run of the emulator collected 100 values for each metric

of consistency: export time (ms), total latency (ms), state data age (ms), and export error

(m). Finally, this process was replicated five times to ensure accurate representation of

the system.

Experiment Configurations

Each run of the emulator captures a single configuration with fixed random delays

between each thread. For each run, 100 observances are collected and averaged.

Ideally, a single emulator run for each configuration would suffice; however, initial

conditions and possibly other unknowns, vary the output. In addition, relative thread

offsets, which are dependent on thread rates and delays, also vary the response

significantly. Patterns in metric values are seen due to this variability and they depend on

the metric, the thread configuration, and relative thread offsets. Figure 9 shows the

variability of state data age within a run, where the state data age is at a minimum when

T4 receives an update of state data. The state data age values increase until the next

update. The thread rates and offsets determine the length of time between updates. In the

example shown in Figure 9, the state data age increases through ten observances from 48

ms to 228 ms and then repeats this pattern.

46

For each run, the emulator stops and restarts with new random thread offsets.

Metric values recorded between runs vary due to the latency added by these varying

thread offsets even for the same thread rate configurations. The larger relative offset

between threads adds more latency; thus, runs with larger relative thread offsets have

greater times for metrics. The differences of a second emulator run are shown in Figure

10. The averages of the state data age values in Figure 10 are 117 ms compared to 138

ms in Figure 9. Due to this variability, many runs of a single thread rate configuration

are executed. For this experiment, 1,000 runs per configuration were performed resulting

in 1,000 averaged values per metric for each thread configuration.

Figure 9: Run 1 Variability (State Data Age).

47

Figure 10: Run 2 Variability (State Data Age).

Replications

A replication is a set of 16 configuration responses for each of the four metrics.

These values are calculated from the average of the 1,000-recorded runs. For this thesis

effort, five replications were performed to satisfy a 95 percent confidence level in the

results. In addition, this experiment uses a significance level of 0.5. The calculated

results for each metric over the entire experiment are captured in Table 2. The standard

deviation between replications responses were about the same as the thread timing error

of 1 ms.

48

Consistency Metric Results

Total Latency

Total latency is measured, from the time T2 samples state data, to the time T3

receives and stores the most recent state data. Once T2 transmits the data over the

network it reaches a queue. T3 uses the most recent data stored on this queue. Once T3

has received data off the network queue, it does not receive data until a new update

arrives from T2. This metric indicates the time it takes to move data new data from

producer to consumer and is related to consistency of the system. The longer it takes to

move state data from the producer to consumer the more inconsistent they potentially

might be. Total latency, therefore, is a function of the thread architecture and network

latency. However, for this experiment, network latency is negligible and close to 0 ms.

Table 2: Experiment Responses (Averages of Five Replications).

49

Figure 11 shows an example of an emulator response for total latency with a thread rate

configuration of 50/5/5/50 Hz.

The variability of this metric is due to latency added by thread offsets between

runs. In other words, within a single run, this metric is the same value. Once the

emulator is restarted with new thread offsets and another run begins, a new value is

observed, but it is the same value for all 100 observances. It is important to note that T3

receives only the most recent state data from the network queue. Therefore, total latency

does not take into account “old” state data, and records only the time new state data

propagates from T2 to T3. In other words, this metric will not increase if T3 checks the

network again before an update has been received.

Figure 11: Total Latency Given Equal T2 & T3 Rates.

50

T1 rates have no effect on total latency because the measurement starts from the

point T2 samples state data. The rate at which T1 updates this data has no impact on total

latency. Similarly, T4 also has no effect since the end of this total latency measurement

ends with T3 storing the data received from the network. Therefore, the rate at which T4

uses this stored data for calculations, etc, has no relationship to total latency. This leaves

T2 and T3 factors. It is the relative offset between T2 and T3 that determines the overall

latency or “freshness” of the delivered data plus any network latency. For this

experiment network latency is practically zero. Therefore, total latency is dependent

upon both thread rates. For this configuration in which T2 and T3 have the same rate

(200 ms), total latency may vary anywhere from 0 to 200 ms (Figure 11). This is because

the thread offsets associated with a 200ms period are from 0 to 200 ms. If the thread

rates were increased, then the offsets are reduced and smaller total latency times result.

For example, Figure 12 shows the impact of increasing the rate of T2. If T2 is reduced to

50 ms then the relative thread offset between T2 and T3 then can be anywhere from 0 to

50 ms for this configuration. The same reasoning applies if T2 and T3 rates are swapped.

51

 When this is applied to the general case for all thread configurations, it is known

that the lowest thread rate will have the largest influence on the result. This is because

the threads are cyclic. Therefore, the fastest thread rate will determine the values. For

example, if either of the threads has a 50 ms period, while the other is greater than 50 ms,

then the relative offset between the threads will be values ranging from 0 to 50 ms.

Therefore, the total latency will range from 0 to 50 ms. A general equation that describes

the total latency based on thread rates and network latency is shown in equation 1. Since

the equation is the average of responses, a factor of 1/2 is used. For example, if the

smaller rate of T2 or T3 is 50 ms, then the average total latency would be 25 ms.

Figure 12: Total Latency With Faster T2 Rate.

Average Total
Latency : 𝑇𝐿 =

1
2

{𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑜𝑓 𝑇2 𝑜𝑟 𝑇3} + 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
Equation 1

(1)

52

 To prove the total latency model correct, the output data is compared. As an

example if the thread configuration of 20/200/200/20 ms, then the expected average total

latency is 100 ms because the range of values vary from 1 to 200 ms. Likewise, for a

thread configuration of 20/50/200/20 the total latency should be 25 ms. This is

confirmed with the values presented in Table 2.

 Average Total Latency indicates that both threads T2 and T3 play an equally

significant role in determining how fast the most updated state data is delivered from

producer to consumer. This is directly associated with the consistency of a simulation

and should give insight to metrics discussed later in this paper.

State Data Age

State data age is a measure of consistency that indicates the time that has elapsed

between the data the consumer is using and the time associated the current value as

maintained by the producer. This metric is depicted in Figure 13 with a 20/200/200/20

ms thread period configuration. When state data is updated by T1, the data is “stamped”

with the current time (i.e., timestamp) by the executing thread as part of the emulator.

This data propagates through the system until it is used by T4, which then marks it with

timestamp 4 (ts4). The difference between ts1 and ts4 is known as state data age. The

state data age is based on how long it takes the data to propagate through the entire

system and how often state data is used by T4. If no new update is used by T4 then the

state data age gets larger. In this sense, this metric determines the “age” of the data.

53

The state data age varies within a run because this metric accounts for updates. In

Figure 13, every dotted red line marks state data age measurement. Within a single run,

this measurement grows until T4 receives new data. Because the thread rates of T4 to T3

are in a ratio of 1
10

, T4 will use the same state data 10 times before updated state data

arrives. Therefore, state data age will increase by the value of T4’s period 10 times.

After T4 is updated the pattern will start again. Figure 13 captures the output of an

emulator run, with the state data age increasing from 28 ms to 208 ms for every 10

observances. An average of 118 ms for this metric is then recorded to the cumulative

output file.

The state data age also varies between runs due to random thread offsets set at the

beginning of each run. A higher thread offset does necessarily add to state data age

because the threads are cyclic. Instead, the relative offsets between

From this example it may appear that T4 may be impacting the average state data

age, but it does not. For instance, if the period of the T4 rate were reduced by half, the

average state data age for the same cycle of observances is about the same. In other

words and averaging effect occurs, which negates the impact of the T4 rate. The

influential factors in this example are T2 and T3, which not only help propagate the data

through the system from producer to consumer, but also heavily impact the rate at which

updates reach T4. These observances also apply to the general case for any thread

configuration. The equation that describes the average state data age is shown below in

equation. It is expected that 𝛽4 and the intercept, I, will be approximately zero.

54

General State Data
Age Model:

𝑆𝐴 = 𝐼 + 𝛽1(𝑇1) + 𝛽2(𝑇2) + 𝛽3(𝑇3) + 𝛽4(𝑇4)

Equation 2 (2)

An example of a single configuration run is shown in Figure 13 below. An entire

replication records 1,000 of these runs for each of the 16 configurations. In addition,

five replications of this experiment were performed. The average responses for all five

replications are shown in Table 3. The largest standard deviation between all five

replications for any of the configurations is 1.05 ms. An analysis of variance (ANOVA)

was performed on the state data age responses (Table 4). The ANOVA indicates that in

addition to T2 and T3 being significant, T1 also impacts state data age. In addition, a full

linear model was created (Table 5), which includes all factors and interactions. Finally,

with a significance level of 0.05, the t-test on coefficients in the model indicates that T1,

T2 and T3 are significant, while other factors are not.

55

Figure 13: State Data Age Measurement.

Table 3: State Data Age.

56

Table 4: State Data Age ANOVA.

Table 5: State Data Age, Linear Model (Full).

57

 Using just the significant factors a new model was created. This model is shown

in Table 6 below.

 Table 6: State Data Age, Linear Model (New).

Factor Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.1731 0.2757 0.6280 0.5320
T1 0.4803 0.0140 34.3600 <2e-16
T2 0.4995 0.0009 535.9810 <2e-16
T3 0.4990 0.0009 535.5100 <2e-16

Equation 3 shows the linear model for state data age. Analysis of this model

shows that it is linear and there are no effects from the interactions of the threads.

Therefore, each thread contributes a linear effect to the state data age. The adjusted R-

squared for this model 0.9999 indicating an excellent linear model fit. In addition, R’s

global validation of regression assumptions indicates that skewness, kurtosis, link

function, and heteroscedasticity assumptions are met by this model indicating a good

linear fit. Figure 14 shows some of the model analysis plots. The Normal Probability

plot indicates a good linear model within the 1 and -1 theoretical quintiles. In addition,

the Histogram plot in Figure 14 indicates that the model has a near normal curve. A

slight sinusoidal pattern emerges on the Plot of the Standardized Residuals, but this is to

be expected because the influential factors, T2 and T3, have varying rates from fast to

slow in the experiment.

State Data Age Model: 𝑆𝐴 = 0.48(𝑇1) + 0.50(𝑇2) + 0.50(𝑇3) Equation 3 (3)

58

The new model shows that threads rates T2, and T3 highly affect the state data

age about equally. In addition, the model implies that T4 has no effect on the average

state data age. Although T1 through the ANOVA is less significant than T2 and T3 it

still impacts the state data age. Finally, the intercept for the new model is found to be

negligible and well below the ± 1 ms error of the C++ timers and subsequently removed

from the final model (Equation 3). This final model gives a great characterization of the

export time and how the state data “ages” as it updated and used in the system.

Export Time

Export time measures the difference between the creation timestamp of data used

at the consumer and of data being updated at the producer. Export time is an important

metric for consistency because it gives a direct comparison of times of state data between

Figure 14: Model Analysis Plots (State Data Age).

59

the producer and consumer. The model is expected to be linear and is shown in equation

4 below. Based on the analysis of state data age, it is expected that 𝛽4 and the intercept

will be a negligible in this model. Furthermore, this model is expected to be linear.

General Export
Time Model:

𝐸𝑇 = 𝐼 + 𝛽1(𝑇1) + 𝛽2(𝑇2) + 𝛽3(𝑇3) + 𝛽4(𝑇4)

Equation 4 (4)

Five replications were performed during this experiment and the results are shown in

Table 7. In addition, ANOVA was performed, and these results are shown in Table 8.

The ANOVA results shown in Table 8 indicate that only T2 and T3 are significant

factors. From the results of the ANOVA, a full model was created using all thread

factors and interactions.

Table 7: Export Time Responses.

60

Table 8: Export Time, ANOVA.

The coefficients of the full model are shown in Table 9. Because only T2 and T3

were significant, a new model was created using only T2 and T3 rates while all other

factors were dropped. To ensure the new model is sufficient, a drop-in-deviance test was

performed. A drop-in-deviance test compares the full model against the new model to

see if factors may be dropped without any significant loss to the model. This test

indicated that all other factors may indeed be removed from the model.

61

Table 9: Export Time, Linear Model (Full).

 The new export time model is created by dropping all factors but T2 and T3. This

final model is shown in Equation 5 below.

Analysis of the export time model shows that it is linear and there are no

significant effects from the interactions of the threads. Therefore, each thread contributes

a linear effect to the state data age. The adjusted R-squared for this model is close to 1,

indicating an excellent linear model fit. In addition, R’s global validation of regression

assumptions indicates that skewness, kurtosis, link function, and heteroscedasticity

assumptions are met by this model. Figure 15 shows some of the model analysis plots.

The Normal Probability plot indicates a good linear model within the 1 and -1 theoretical

Export Time Model: 𝐸𝑇 = 0.499(𝑇2) + 0.499(𝑇3) Equation 5 (5)

62

quintiles. In addition, the Histogram plot in Figure 15 indicates that the model has close

to a normal curve. A slight sinusoidal pattern emerges on the Plot of the Standardized

Residuals, but this is to be expected because the influential factors, T2 and T3, vary in a

cyclic manner over time.

Figure 15: Model Analysis Plots (Export Time).

In this model, T1 does not have a significant effect on the responses. T1 is not

influential because regardless of its rate, its contribution averages out to be the same.

Figure 16 shows an example of a slower T1 rate. The export time measurements are

represented by the red arrows in the lower half of the graph.

63

Figure 16: Export Time Measurement: Slower T1 Rate.

If T1 runs at a slower period of 60 ms then the export times will be 60, 120, 180,

and 40 ms each repeated three times for the 12 observances by the consumer model

thread. These responses average out to 100 ms. Now if T1 is run at a faster period of 20

ms as shown in Figure 17, then the export times for 12 observances the export times will

be 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 40, and 60 ms. As with the slower T1

rate, the average of all of these responses is 100 ms. This example shows that over a

number of observances over the same cycle the averages of the export times will be very

close for any rate of T1. This averaging effect is depicted in Figure 18.

64

Figure 17: Export Time Measurement: Faster T1 Rate.

Figure 18: Export Time Measurement: T1 Averaging Effect.

65

What impacts the export times more significantly is the movement of state data

from producer to consumer and this is dependent on T2 and T3. Therefore an increase in

either the T2 or T3 rates results in lower export times. Figure 19 shows an example of

this, with the blue asterisks above the T4 timestamps indicating updates of state data. If

the T2 period is increased to from 200ms (as it was in the last example) to 50ms, the

updates reach T4 faster and the consistency time measurements between T1 timestamps

become more frequent; thus, the export times are less than if T2 had a longer period of

200 ms. In summary, faster T2 rates (smaller periods) result in smaller export times. The

same explanation applies to T3—faster rates result in smaller export times.

Figure 19: Export Time: T2 Effects.

66

Export Error

Export error is the measured difference of an object’s position at the producer and

consumer. In this experiment, the velocity is a constant 1 m/s and the response is

measured in meters. Since the export error is the difference in position from the

producer versus the consumer, it is closely related to export time. The export error is

equal to the export time converted to seconds (factor of 0.001) and multiplied by a

velocity of 1 m/s. Since export times are recorded in milliseconds, the export errors

gathered from the experiment should differ from export times by a factor of 0.001.

The resulting export errors were recorded from the same five emulator

replications as the export times. The recorded responses in Table 10 show that export

errors differ from export times by a factor of 0.001. As expected, the full model for

export error shown in Table 11 are almost the same as the export time full model results.

Likewise, the final linear model differs by a factor of 0.001 as shown in Equation 6.

Note, that export errors are highly dependent on velocity and acceleration. For example,

if the velocity were 100m/s then the linear model shown in equation 4 must be multiplied

by a factor of 100. This research effort did not use modified parameters, but doing so in

future research, may return interesting results.

Export Error Model: 𝐸𝐸 = 0.0005000(𝑇2) + 0.0004996(𝑇3) Equation 6 (6)

67

Table 10: Export Error Responses.

Table 11: Export Error, Linear Model (Full).

68

Comparison to Related Work

The experiment conducted in this research effort is an extension to the work

performed by Hodson (2009). In Hodson’s work, a Petri Net was used to simulate thread

architecture and interactions - this experiment obtained direct measurements by

emulating the thread architecture of an RTDS. Because of the relationship to Hodson's

work, it was expected to see related outcomes, and the models developed in both

experiments should support the same characterization of the system. The metrics used in

this research differ from Hodson’s. Since Hodson does not use thread three as a factor as

data was instantaneously moved from the network into the consumer state space

(simulating a blocked network thread), the model is similar to model used here but with

T4 eliminated as a factor and a network delay added. Therefore, a new metric is

measured using only the first three threads (ts3-ts1). This metric closely matches the

metric used by Hodson (2009). In addition, Hodson adds a network latency factor, which

by his own analysis is linear and additive to the state data ages. The ts3-ts1 values are

then adjusted by adding the corresponding network delays. These adjusted values match

very closely within ±1 ms of Hodson’s state data ages (2009). The comparison of these

results are shown in Table 12.

69

Table 12: Comparison of Hodson's Results (Hodson, 2009).

Hodson also concluded that T4 had no significance in determining the age of the

state data (2009). The results found here concur that in all four metrics, T4 had no

significant effect on the response. Furthermore, similar to Hodson (Hodson, 2009), the

data recorded here indicates that T1, T2, and T3 are significant in determining the state

data ages. What is interesting is that the export time is dependent only upon T2 and T3

rates. Thus, when considering consistency of data between producer and consumer only

the rate of movement of data between them has a significant effect rather than the rate at

which the models are updated.

Summary

The responses from all four metrics were used to create linear models and

perform ANOVA to determine the effect each thread had on the results. The data and

results have shown that the most significant threads in a Real-Time Distributed System

70

are T1, T2, and T3. T4 had very little significance in all of the models presented and no

significance in determining export time. In addition, the results, in comparison with

results obtained from Hodson’s (2009) work, verify expected similarities.

71

V. Conclusions and Recommendations

Chapter Overview

The purpose of this chapter is to present the conclusions of this research and

explore recommendations for future research. Chapter one presented several research

questions as to the effects of thread rates on consistency. These questions will be

answered in this chapter and the answers will have an impact for future real-time

distributed simulations (RTDS).

Conclusions of Research

The results of this research confirm that thread rates significantly affect the

consistency of a real-time distributed simulation. For this research, four metrics were

used to quantify consistency-export time, total latency, state data age, and export error.

Among all of these metric responses, the results suggests that the consumer modeling

thread (T4) has little effect. The rate at which the consumer models the virtual

environment has little effect on consistency. What is more important, is that state data

updates be available in a timely manner. For total latency, which is simply examining the

time it takes the producer to transmit data to the consumer, T2 and T3 are the only

significant factors. For state data age T1, T2, and T3 all are significant. Finally, for

export time and export error the producer sampling thread (T2) and the consumer

receiving thread (T3) have a significant effect on consistency because they are

responsible for moving data from producer to consumer. This intuitively makes sense

since consistency is more dependent on the rates at which updates are received at the

consumer rather than the rate at which the producer and consumer model their respective

72

environments. Therefore, T2 and T3 factors are significant because they heavily

influence the rate at which data is transferred between producer and consumer and

therefore influence their rate of updates at T4. Conversely, T1 and T4 model the

environments of the producer and consumer respectively, but they have almost no affect

on the export times and errors whether they update their models at slower or faster rate.

In other words, they may update the models slowly, but as long as the state data from the

producer is updated at the consumer at a fast rate, the simulation is consistent.

The overall results indicate that T2 and T3 are significant in keeping a strong

consistency in the simulation. However, the consumer and producer modeling rates are

less important. If these thread rates are slow then consistency of the models will be

loose. If T2 and T3 threads rates are high, the state data is transferred more quickly and

the consistency is high between producer and consumer. In addition, the rate of change

of the entities simulated contribute to the consistency. For higher object velocities,

higher export errors must be expected. Matching faster thread rates (T2, and T3) will

help to improve this error, but there are limits and the speeds of these threads cannot be

instantaneous. Thus, thread rates can be adjusted to help meet the requirements of the

simulation. Furthermore, the models for each metric are linear, and support conclusions

made by Hodson (2009). The data suggests that consistency depends on three factors—

the rate at which entities in the producer model are moving, the rate of T2 and the rate of

T3. Conversely, the rate at which the consumer model is updated has little effect.

The impact of this research is significant as software architecture significantly

affects consistency – maybe more so than network latency. This research allows users to

better understand, quantify and even estimate the effects of thread rates on consistency.

73

In addition, software should be designed with thread rates in mind to meet the goals of

the simulation. Most users are aware of network latencies and know that such latencies

can add 100 ms. However, the thread architecture with virtually no network latency may

add up to on average about 200 ms. This is significant and should be accounted for in the

testing and analysis. Finally, knowing average latencies of the software architecture plus

network latency creates a baseline that can be established for the consistency of the

simulation.

Recommendations for Future Research

There are several recommendations for future research. First, the emulator

designed for this research was run using a single application. Future research would look

to separate the emulator into two applications on a single machine to better represent a

RTDS. Although, this would allow the emulator to still share the local system clock to

make measurements, this would add complexity in timing of capturing the data as well as

reading shared memory from each application.

Second, further research should also investigate network latency as an additional

factor. Together, the architecture latency and the network latency should make up a more

complete picture of the overall consistency of an RTDS. Constant network latencies

should simply be additive, but introducing more complex transient network latencies

would help characterize consistency under such conditions. An emulator measuring

both architecture and network latency would provide a better representation of the

system.

74

Examining more complex movements of multiple objects within the system might

also provide some insight into consistency of RTDS. This research would tackle the

question of defining consistency based on several differences within the system moving

at different rates. This type of research could be complimented by examining dead

reckoning algorithms, which seek to improve and reduce the communication between

RTDS. By using an emulator that measures differences between applications, algorithms

could be check for their effectiveness directly.

Finally, the applications could be separated to run on two machines. The

emulator on the two applications could be adapted to send a system level ping from one

computer to the next and then back again. Using synchronized clocks and recording

timestamps, the time could be measured for the round trip that state data makes. This

research would help give better insight to a system with two physically separated

applications, which would better represent an RTDS system.

Summary

RTDS are used in a variety of applications-from training to test and analysis. In

the latter case, it is important to have a strong consistency among all participants, or at

least an understanding of it. Knowing the latency introduced by the simulation is

important to understand and predict. By using an emulator to take direct measurements

of a system similar to a RTDS, models have been created to help characterize the

consistency. These models help characterize the system and validate previous research

conclusions. This results here have only explored a few research paths dealing with

consistency, and future research is needed. The impact that this kind of research has on

75

the Air Force and the RTDS community is significant and will help shape future

simulations.

76

Appendix A

Appendix A Overview

The purpose of this section is to describe the emulator code used in this research

effort to capture consistency metrics. The emulator models a simple real-time distributed

simulation (RTDS) system by implementing four threads—producer model thread (T1),

producer sampling thread (T2), consumer receiving thread (T3) and consumer model

thread(T4). The emulator is able to adjust each thread rate in order to affect the response.

In addition to each threat rate, offset delays are given to the emulator. The emulator

allows direct measurement of the time at which data moves through the system. A

description and UML diagrams are provided aid to explain the workings of the emulator

code.

General Overview of Inputs and Outputs of the system

The emulator is given a set of parameters in which to run its test. For a single run,

an emulator is given all four thread rates, thread offsets, number of data points to collect,

reset data parameter, and a filename to save the data. This single run of the emulator

starts a manager thread that starts each thread sequentially with the specified offset for

threads two, three, and four. The thread offsets were initially calculated by the emulator

but it was discovered the C++ rand() function did not accurately generate random

numbers. For this reason, random delays were calculated outside the program. For this

experiment 100 observances for export time, export error, and state data age are

recorded before terminating the program. For total latency the observances must be

recorded by T3, while all other metrics may be recorded by T4. These results are then

written to a single configuration output file. This file contains header information such as

77

the specified thread and offset rates, and statistics on the metrics. Each observance

contains timestamps marked by each thread. As the emulator finishes, it writes the

averages of all metrics to a cumulative output file. For each of the sixteen configurations

1,000 runs are executed producing 1,000 averaged values for each metric. Figure 20

depicts the emulator inputs and outputs.

Figure 20: Emulator Inputs and Outputs

Thread Architecture

The Qt framework simplifies the work of multithreading by using what are called

Q-threads. Figure 22 shows a UML diagram describing the manager object and its

associated thread objects. The manager’s readargs() function is first called to store all

78

the rate and delay parameters given to the emulator. Then the manager’s start() function

creates each thread and each associated process that will run. In order for the threads and

the manager to communicate, Qt slots and signals are used as shown in Figure 21. In Qt,

Q-threads and their associated processes are separate objects. The manager object moves

these processes under each thread during run time and then calls the Q-thread object’s

start() function. Qt signals and slots are used to link each thread and its process. When a

thread’s process is complete it emits the finished() signal which is connected to the

corresponding thread’s quit() and deletelater() slot. Thus, the manager effectively is able

to start and stop each thread. In order to control thread rates and delays. the Windows

timeGetTime() function is used. This function retrieves the elapsed time since Windows

was started. An initial start time is captured at the beginning of execution and then

compared to the current retrievals of the system time. By this method an elapsed time is

calculated thereby allowing threads to run at specified rates and introducing delays

between thread start times. The Qt framework does offer Q-timers, but it was discovered

that they are much less accurate (several milliseconds). In addition The windows

timeGetTime() was found to be accurate within one millisecond.

Data Management

Thread one (T1) models a simple object moving in a straight path. The velocity is

set to 1m/s and its initial position is zero meters. T1 calculates the new position of the

this object according to its thread rate. If T1 has a rate of 50 Hz then every 20 ms it will

recalculate the position of the object. It stores the position of the modeled object in a

mydata object along with a timestamp, ts1. Thread 2 (T2) then samples the data from

T1’s mydata object. It reads all the variables and stores its own timestamp (ts2) in the

79

data object. It then transmits this via UDP on the local network. Thread 3 (T3) reads the

local network port for this data. It then stores the received data into the consumer’s

mydata object along with its own timestamp (ts3). Thread 4 (T4) then samples the

mydata object and stores its own timestamp (ts4). The emulator then appends all

received data into a running QString variable called totaldata. When enough

observances are recorded, the process will quit and emit a signal to the thread manager

object to save the data. The thread manager then gather all the data from the thread

process, and write this to file. In addition, it will save metric averages to a cumulative

output file. Finally, the program terminates.

Summary

The key to this experiment was having an emulator that could directly measure

the time between each thread in the system. The emulator was created using C++ in a Qt

framework. Many of the Qt libraries helped to make the program simpler such as

QThreads. Overall, the emulator performed its function and the data recorded was used

to characterize the system.

80

Figure 21: Signals & Slots, Connecting Threads and Processes

81

Figure 22: UML of Thread Manager and Thread Processes

82

Bibliography

Banks, J., Carson, J., B.Nelson, & Nicol, D. (2001). Discrete-Event System Simulation.
Prentice Hall.

Belanger, J., Venne, P., & Paquin, J. (2010, March 3). The What, Where and Why of
Real-Time Simualtion. Retrieved from Opal RT Technologies: http://www.opal-
rt.com/sites/default/files/technical_papers/PES-GM-Tutorial_04%20-
%20Real%20Time%20Simulation.pdf

Bottazzi, M., & Salati, C. (1991). Processes, Threads, Parallelism In Real-Time Systems.
CompEuro '91 Advanced Computer Technology, Reliable Systems and Applications
5th Annual European Computer Conference Proceedings., (pp. 103-107).

Cavitt, D. O., Maly, C. &., & K.J. (1997). A Performance Monitoring Application For
Distributed Interactive Simulations (DIS). Simulation Conference, (pp. 421-428).

Churchill, E. F., Snowdon, D. N., & Munro, A. J. (2001). Collaborative Virtual
Environments: Digital Places and Spaces for Interaction. Verlang: Springer.

Delaney, D., Ward, T., & McLoone, S. (2006). On Consistency and Network Latency iin
Distributed Interactive Applications: A Survey--Part I. Massachusetts Institute of
Technology.

Dewar, J. A., Bankes, S. C., Hodges, J. S., Lucas, T., Saunders-Newton, D. K., & Vye, P.
(1996). Credible Uses of the Distributed Interactive Simulation (DIS) System. Santa
Monica : Rand Corp .

Fritzson, P. (2003). Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Press.

Hodson, D. D. (2009). Performance Analysis of Live-Virtual-Constructive And
Distributed Virtual Simulations: Defining Requirements in Terms of Temporal
Consistency. Wright-Patterson Air Force Base: Air Force Institue of Technology.

Hofer, R. C., & Loper, M. L. (1995). DIS Today. Proceedings of the IEEE , 83 (8), 1124-
1137.

Murray, R. (2010). DIS Overview and Version 7 Information. Retrieved July 10, 2012,
from Simulation Interoperability Standards Organization:
http://www.sisostds.org/DigitalLibrary.aspx?EntryId=29288

83

Raja, P., Hernandez, J., Ruiz, L., Noubir, G., & Decotignie, J. (1993). A Software
Architecture for Maintaining Temporal Consistency in a Distributed Real-Time
Environment. 380-387. IEEE.

Ravindran, K., Sabbir, A., & Ravindran, B. (2008). Impact of Network Loss/Delay
Characteristics on Consistency Control in Real-time Multi-player Games. IEEE
CCNC , 1128-1133.

Roy E. Crosbie, P. (2007). High-Speed Real-Time Simulation. First Asia International
Conference on Modelling & Simulation (p. 1). IEEE.

Singhal, S., & Zyda, M. (1999). Networked Virtual Environments Design and
Implementation. New York: ACM Press.

Tanenbaum, A. S. (2007). Distributed Systems Principles and Paradigms. New Jersey:
Pearson Education Inc.

Tolk, A. (2012). Engineering Principles of Combat Modeling and Distributed Simulation.
New Jersey: John Wiley & Sons Inc.

Zalcman, L. (2004). What Distributed Interactive Simulation (DIS) Protocol Data Units
(PDU) Should My Australian Defence Force Simulator Have? Edinburgh: Defence
Science and Technology Organisation Edinburgh (Australia) Air Operations Div.

Zhou, S., Cai, W., Turner, S. J., & Zhao, H. (2003). A Consistency Model for Evaluating
Distributed Virtual Environments. The 2003 International Conference on
Cyberworlds (CW'03) (pp. 85-91). IEEE.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

21 Mar 2013
2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
 03 Oct 2011 - 21 Mar 2013

4. TITLE AND SUBTITLE
Estimating and Measuring Application Latency of Typical Distributed
Interactive Simulation (DIS)-Based Simulation Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

N/A
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Building 640
WPAFB OH 45433

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-13-M-14

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of the Secretary of Defense
Attn: Dr. Catherine Warner
1700 Defense Pentagon commercial #: (703) 697-7247
Washington D.C. 20301 e-mail: catherine.warner@osd.mil

10. SPONSOR/MONITOR’S ACRONYM(S)
OSD
11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
One of the challenges in a distributed virtual environment stems from the requirement to simultaneously execute the simulations in real-
time to support human interaction, in conjunction with maintaining a consistent view of the shared simulated environment. Maintaining a
consistent set of simulation state data in the presence of network latency is difficult if individual data items are updated frequently. The
principle application of DIS-based simulation environments has been in the domain of training where a consistent view or its correctness is
often judged in subjective terms such as the simulation looking and feeling correct. New application areas for these systems are emerging
in the analysis and test domains. For these domains, quantifying shared state consistency in terms of overall distributed application
architecture is desirable. This research effort will investigate and validate methods to calculate and measure the latency effects that consider
the structure of the applications themselves. Additional latencies introduced due to the software architecture may significantly affect the
consistency of the simulation. An improved understanding is beneficial to the Air Force where real-time distributed simulations used for
the purpose of analyzing the systems they simulate and the support of live test events.

15. SUBJECT TERMS

Real-time Distributed Simulations, Software Architecture Latency, Simulation Consistency

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

95

19a. NAME OF RESPONSIBLE PERSON

Douglas Hodson, Ph.D, AFIT/ENG
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 (Douglas.Hodson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Drinkwater, Ryan L , Captain, USAF

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	I. Introduction
	General Issue
	Problem Statement
	Interactive Simulations
	Real-Time Distributed Simulation Consistency
	Research Goals
	Assumptions/Limitations
	Methodology Preview
	Summary

	II. Literature Review
	Chapter Overview
	Terminology
	Shared View
	Defining Consistency
	Tradeoffs for Consistency
	Consistency Versus Accuracy
	Factors of Consistency
	Network Latency
	Message Ordering
	Software Architecture
	Relevant Research
	Measuring Consistency

	Conclusion

	III. Methodology
	Chapter Overview
	Problem Statement
	Approach
	System Boundaries
	System Services
	Workload
	Performance Metrics
	Parameters
	Factors
	Evaluation Technique
	Experimental Design
	Obtaining Measurements of Consistency
	Full Factorial Design

	Analysis
	Summary

	IV. Analysis and Results
	Chapter Overview
	Process of Collecting Emulator Results
	Overview of Emulator
	Experiment Configurations
	Replications

	Consistency Metric Results
	Total Latency
	State Data Age
	Export Time
	Export Error

	Comparison to Related Work
	Summary

	V. Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	Recommendations for Future Research
	Summary

	Appendix A
	Appendix A Overview
	Bibliography

